skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gupta, Sajal"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We carry out idealized three-dimensional general-relativistic magnetohydrodynamic simulations of prograde, weakly magnetized, and geometrically thick accretion flows where the gas distribution is misaligned from the black hole (BH) spin axis. We evolve the disk for three BH spins:a= 0.5, 0.75, and 0.9375, and we contrast them with a standard aligned disk simulation witha= 0.9375. The tilted disks achieve a warped and twisted steady-state structure, with the outer disk misaligning further away from the BH and surpassing the initial 24° misalignment. However, closer to the BH, there is evidence of partial alignment, as the inclination angle decreases with radius in this regime. Standing shocks also emerged in proximity to the BH, roughly at ∼6 gravitational radii. We show that these shocks act to partially align the inner disk with the BH spin. The rate of alignment increases with increasing BH spin magnitude, but in all cases is insufficient to fully align the gas before it accretes. Additionally, we present a toy model of orbit crowding that can predict the location of the shocks in moderate-to-fast rotating BHs, illustrating a potential physical origin for the behavior seen in simulations—with possible applications in determining the positions of shocks in real misaligned astrophysical systems. 
    more » « less